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Abstract 

The ideal strength is the minimum stress required to plastically deform an infinite defect-

free crystal and is an upper bound to the strength of a real crystal. Disturbingly, however, 

the best available experimental estimates of the ideal strengths of tungsten and molybde-

num are 25-50% above the values predicted by recent ab initio density-functional calcula-

tions. This work resolves this discrepancy by extending the theoretical calculations to 

account for the triaxial state of stress seen in the nanoindentation experiments and by 

adjusting the experimental values to account for the crystallography of loading and the 

nonlinearity of the elastic response at large strains. Although an implicit assumption in 

many discussions of mechanical properties is that the ideal strength is not experimentally 

observable, as the true strength of most materials is limited by lattice defects, the close 

agreement between corrected experimental and theoretical estimates of ideal strength 

suggests that the ideal strength of some materials can be observed directly using nanoin-

dentation.  

PACS: 62.20.Dc, 62.20.Fe, 62.20.Qp. 



 

Krenn, Roundy, Cohen, Chrzan & Morris Atomistic and experimental estimates of ideal strength 

Page 2 

 Introduction 

If an infinite, defect-free solid is subjected to an increasing load, it deforms elastically 

until the stress exceeds the limit of elastic stability and irreversible deformation occurs.  

The elastic limit defines the “ideal strength” of the solid.  Its value sets an upper bound on 

the mechanical strength the solid can have under the given load.1, 2 Since the elastic limit 

is a property of the infinite, periodic lattice, it can be computed ab initio, with the conse-

quence that the ideal strength is one of the few mechanical properties that are truly 

predictable. 

The most immediately promising experimental approach to measuring the ideal strength 

is nanoindentation, in which an indenter with a tip radius of 50 nm to 1 µm is pressed into 

the material surface. If the native defect density is low, the stressed volume beneath the 

small indenter may be defect-free. Moreover, since the shear component of the indenta-

tion stress reaches its maximum value some distance beneath the surface, deformation 

may initiate in the bulk.  In this case, the local value of the stress required to initiate 

deformation is either the ideal shear strength or the stress required to nucleate disloca-

tions homogeneously, a stress that should be very close to the ideal shear strength. 

Encouragingly, very high values of the shear strength have been reported recently from 

nanoindentation studies of tungsten3, 4 and molybdenum6. The peak shear stresses re-

ported in W range from 25.7 GPa3 with a 700 nm diamond tip to 28.6 GPa4 with a 400 

nm diamond tip. Peak stresses in Mo are reported to be 20 GPa6 with a 50 nm diamond 

tip. These normalized strengths (16-18% of the shear modulus) appear to be independent 

of the radius of the indenter. Surprisingly, however, the values reported are substantially 

above recent ab initio calculations of the ideal shear strengths of these bcc metals.7,8  The 

work presented here resolves this discrepancy, and further establishes that under favor-



 

Krenn, Roundy, Cohen, Chrzan & Morris Atomistic and experimental estimates of ideal strength 

Page 3 

able circumstances, one may observe experimental strengths approaching the ideal 

strength of a material. 

The discrepancy is resolved by reanalyzing both theory and experiment. First, the theo-

retical solution must be modified to reproduce the geometry of the indentation load. The 

calculations reported in Refs. 7 and 8 assumed a fully relaxed shear load.  However, the 

actual stress state at the point of maximum shear under the indenter is triaxial.  This 

triaxial stress stabilizes the structure and raises the ideal strength in shear.  Second, the 

experimental numbers must be corrected for the non-linearity in the stress-strain relation 

at finite strain, and also require a (smaller) correction to orient the shear onto the appro-

priate crystallographic plane.9 These corrections substantially lower the maximum shear 

stress that can be inferred from the experimental hardness data. The net effect is to 

remove the apparent discrepancy: to within the accuracy of our analysis, the measured 

shear strengths are either equal to or slightly below the computed ideal strengths, as they 

should be. Moreover, the difference between the measured shear strengths and the 

predictions of theory are now less than the uncertainties in the analysis (< 5%). 

The next section of this paper presents the computational approach and results.  This is 

followed by a discussion section and the conclusions. 

Computational Procedures and Results 

To quantify the effect of triaxial loading on the ideal strengths of W and Mo, we used the 

local density approximation (LDA) to density functional theory within an ultra-soft 

pseudopotential total-energy scheme10, 11 to calculate the stress-strain response for the 

active shear system in W and Mo (<111>{110}). (The calculations were done with the 

VASP package.12-14) The stress states considered included relaxed simple shear (as in 
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Ref. 7) and a triaxial stress determined numerically from the finite element modeling of 

nanoindentation described below. Using a plane-wave energy cut-off of 17 Ry with a 

Monkhorst-Pack 17×17×17 k-point grid proved sufficient to achieve precision of better 

than 0.01 eV in the calculated energies and better than 0.6 GPa in peak stress.15 The 

triaxial stress increased the shear strength (τcrit) of W from 20.0 to 22.7 GPa and the 

strength of Mo from 17.1 to 18.2 GPa. (The unconstrained strength of W is higher than 

the value (18.2 GPa) calculated by Roundy et al., presumably because different pseudo-

potentials are used in the two calculations). Figure 1 shows the normalized stress-strain 

curves for W and Mo.  They are similar with peak stresses near a shear strain of 17% as 

expected for the bcc structure.7  

To correct the reported values of the experimental strengths we must examine how they 

are generated from the raw data.  In Bahr et al.’s study of tungsten,4 a sharp diamond with 

a tip radius of approximately 400 nm is pressed into a single crystal with a polished 

surface.  Yielding is marked by a sudden increase in the depth of penetration during 

loading.  Prior to yielding, the load-displacement (P-δ) response of the system is fit well 

by the Hertzian model of elastic contact:16 

 3δRP ∝ , (1) 

where R is the radius of the indenter tip.  Since the stress is not measured directly, the 

Hertzian stress field is used to deduce the maximum shear stress underneath the indenter 

at the yield point.  However, the Hertzian stress field assumes linear stress-strain behavior 

in both the indenter and the substrate.  This assumption fails when the shear stress 

approaches the ideal strength (Fig. 1). 



 

Krenn, Roundy, Cohen, Chrzan & Morris Atomistic and experimental estimates of ideal strength 

Page 5 

To include non-linearity, a sinusoidal curve is fit to the ab initio calculated stress-strain 

relation in Fig. 1.  The sinusoid is then used as the elastic-plastic constitutive relation in a 

finite-element (FEM) model of nanoindentation.  The 2D axisymmetric FEM model 

resembles an earlier model by Tang and Arnell17 and uses the ANSYS code.  A fric-

tionless sphere with a radius of 100 units is pressed into a 1600 × 1600 unit substrate.  

The sphere is meshed with elements approximately 2.75 units square, and the mesh on the 

substrate is refined from 100 unit square elements at the opposing boundaries to 1.25 unit 

square elements directly beneath the indenter.  In the model, a stiff indenter is pressed 

into both a linear-elastic substrate and into a substrate with the stress-strain response 

given in Fig. 1.  The shear modulus of the indenter is taken to be 1000 times that of the 

substrate, and both indenter and substrate are assumed elastically isotropic with Poisson’s 

ratios of 0.3.  

We specifically considered indentation normal to a <100> surface, which is the strongest 

configuration, and calculated the resolved shear stress on the most favorably oriented 

member of the <111>{110} slip system.  (This plane should be the first to shear.)  Figure 

2 shows the calculated stress contours for a linear-elastic solid (2a) and for a solid with 

the non-linear constitutive relation given in Fig. 1 (2b).  As expected,18 in both cases the 

maximum value of the resolved shear stress is located beneath the surface slightly off the 

loading axis.  Fig. 3 presents plots of the applied stress (3a) and the maximum shear 

stress (3b) as functions of the indentation depth.  The classic Hertzian model reproduces 

the overall load-displacement curve of the nonlinear substrate very well (3a), but signifi-

cantly overestimates the maximum shear stress in the non-linear solid at the experimental 

yield point (3b).  (The Hertzian model also slightly misestimates the stress in the linear-

elastic solid, apparently because the assumption that the contact area is small compared to 

the size of the elastic bodies in contact16 fails for loads near the yield point.)  The 

Hertzian value for the critical resolved shear stress on the <111>{110} slip system at the 
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experimentally observed failure depth (the indentation depth δ normalized by the indentor 

radius R = 0.16) overestimates the peak stress in the non-linear substrate by a factor of 

1.08.  The Hertzian value for the maximum shear stress at failure (which is the value 

reported in Refs. 4 and 6) is above the true non-linear peak stress by a factor of 1.21. This 

means that the maximum shear stresses cited in past analyses are approximately 20% 

higher than the actual stresses seen on the weakest slip systems, where failure is likely to 

initiate.  

Additional FEM modeling shows that the correction factors are not particularly sensitive 

to the conditions of the model. Using a Poisson's ratio of 0.2 for the indenter (the experi-

mental value of diamond) and Poisson's ratios of 0.25 and 0.35 (typical of most metals) 

gave correction values of 1.20 and 1.23. If we account for the compliance of the diamond 

indenter on W the total error introduced by using the Hertzian stress and ignoring crystal-

lography decreases to a factor of 1.17. Raising the coefficient of friction between the 

indenter and the substrate to 0.4 reduces the factor to 1.20. 

Figure 4 summarizes the effects of the triaxiality of loading and of the non-linear elastic 

correction. The error bar on the corrected experimental numbers includes the possible 

effects of friction, of varying the ratio of the substrate and indenter’s stiffnesses, and of 

varying the Poisson’s ratios of the substrate and indenter.  When all corrections are 

properly made, the maximum shear strengths that can be inferred from nanoindentation 

experiments on W4 (22.8-24.0 GPa) and Mo6 (16.0-16.8 GPa) are, to within the accuracy 

of our analysis, either equal to or below the theoretical values of the ideal strength (W = 

22.1-23.3 GPa; Mo = 17.6-18.8 GPa), as they should be. At the same time, the theoretical 

and experimental values are reasonably close, which suggests that nanoindentation may 

provide a viable means for measuring ideal strength.  



 

Krenn, Roundy, Cohen, Chrzan & Morris Atomistic and experimental estimates of ideal strength 

Page 7 

Discussion 

Other sources of error 

 

We note that the peak shear stresses inferred from the nano-indentation experiments on 

W and Mo are only 96% of the absolute peak stresses predicted by FEM modeling. 

Failure in the FEM model occurs when the slope of the peak stress-strain curve (Fig. 3b) 

drops to 0, which occurs at a relative indentation depth (δ/R) of ~ 0.21. However, failure 

for both W and Mo occur for relative indentation depths of 0.15-0.17. If indentation 

continued to a relative depth of 0.21, the peak stress would be a factor of 1.04 

(=1/Sin(π × 0.16 / 0.21 / 2) higher.  

 

In the calculations presented here, we assumed elastic isotropy because that made the 

problem computationally tractable using the resources that we had available. In fact, the 

shear response of a real bcc material is stiffer than the sinusoidal form we have assumed 

when shear is applied in directions other than 111. The maximum effect that this could 

have on our analysis can be estimated by comparing the peak strains at the indentation 

failure depth for elastic and plastic cases. The peak shear strain for the linear-elastic case 

(6.2 %) is 10% lower than the non-linear elastic case (6.9 %). Given that the anisotropic 

solution will lie between the linear and non-linear cases and given that the weakest slip 

system still has a sinusoidal stress-strain response, a gross lower bound on the anisotropic 

peak stress solution would be 5% lower than the isotropic case. However, since the stress-

strain behavior on the weak slip system will be identical for the isotropic and anisotropic 

solutions, the true correction is likely to be much less than 5%.  

 
Other models of the limits of indentation strength 

A recent paper by Kramer et al.3 uses atomic force microscopy to demonstrate that 

limited (and, on some occasions, reversible) plastic deformation can occur before bulk 
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yielding is detected in a load-displacement curve. This implies that a small number of 

dislocations can either move or nucleate before bulk plasticity is observed. Kramer et al. 

further argue that the beginning of large-scale plasticity is limited by the fracture strength 

of a surface oxide layer. This may be a reasonable explanation for the observed increase 

in the yielding load of Fe-3% Si single crystals with increasing oxide thickness,4 but it 

cannot convincingly explain the apparent insensitivity of yield load to oxide thickness in 

a series of experiments on tungsten single crystals performed by the same authors.4   

However, the observations of Kramer et al.3 may also imply that the onset of macroscopic 

plasticity is limited by the activation of a dislocation multiplication mechanism. In the 

absence of such a mechanism, a sharp diamond tip loading a flaw-free region of a metal-

lic surface could nucleate a small number of dislocation loops. Nucleation could occur 

either at the surface or at an interface between a surface oxide and the bulk metal. These 

loops will be pinned at the surface but can grow under increasing applied load. If the 

growing loops did not encounter obstacles during their growth, this plastic deformation 

would be reversible. If the collapsing loops are pinned by obstacles, there will be a 

residual deformation on the surface, as Kramer et al. have observed.  Time dependent 

recovery is possible if thermal activation and the line tension of the loops is sufficient to 

overcome the obstacles.  

A macroscopic yield point requires either a renewable dislocation source beneath the 

surface (see Ref. 5, Chapter 20, for examples) or the homogeneous nucleation of a shower 

of dislocations in the bulk. We can estimate the dislocation density that can be released 

by an elastic instability by equating the elastic strain energy per unit volume (=(1/2)Gγ2) 

with the line energy of a given line density of dislocations (~ (1/2)Gb2ρ). For any shear 

modulus G, a strain γ of only 0.01, and a burger’s vector b of 3Å, we get a dislocation 
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density ρ of about 1015/m2. Furthermore, the energy released in the instability is more 

than sufficient to fracture a thin surface oxide film. 

Conclusions 

After incorporating the triaxial state of stress seen in nanoindentation experiments into ab 

initio calculations of ideal strength and after properly accounting for the crystallography 

of loading and the nonlinearity of the elastic response at large strains in the analysis of 

experimental nanoindentation experiments, we find close agreement between corrected 

theoretical and experimental estimates of the ideal strengths of W and Mo. This suggests 

that the ideal strength of some materials can be observed directly using nanoindentation.  
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Figure Legends 

Figure 1 Ab initio stress-strain response for <111>{110} slip in tungsten and molybde-

num. Data is shown for both simple shear and shear along a path that includes the triaxial 

stress states seen during indentation. The solid line is the sinusoidal constitutive relation 

used in our FEM modeling.  

Figure 2 Contour plots of the maximum <111>{110} shear stresses beneath a rigid 

spherical indenter near the failure loads. (a) pictures a material with linear-elastic behav-

ior, and (b) a material with the non-linear behavior shown in Fig. 1. The stress is normal-

ized to the peak stress in (b) (= .089 of the shear modulus, G).  

Figure 3 Macro- and micro-scopic response of the linear and non-linear FEM models and 

the analytic Hertzian solution. (a) Normalized applied stress as a function of indentation 

distance. The normalized stress is P/(G π R2), where P is the applied load, R is the radius 

of the indenter, and G is the shear modulus of the indenter. (b) Maximum shear stress and 

maximum shear stress resolved on <111>{110} as a function of indentation depth. The × 

and its error bar marks the upper range of indentation depths at which experimental 

failure occurred in W and Mo.  

Figure 4 Comparison between theoretical and experimental estimates of ideal strength. 

Experimental estimates of ideal strength for both tungsten4 and molybdenum6 based on a 

Hertzian contact model exceed ab initio theoretical calculations under loading conditions 

of simple shear. However, ab initio calculations that include the effects of multiaxial 

constraint during indentation slightly exceed experimental estimates which incorporate 

both the crystallography of slip and the non-linear elastic response expected near the limit 

of elastic stability. 
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Figure 1 Ab initio stress-strain response for <111>{110} slip in tungsten and molybde-

num. Data is shown for both simple shear and shear along a path that includes the triaxial 

stress states seen during indentation. The solid line is the sinusoidal constitutive relation 

used in our FEM modeling.  
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Figure 2 Contour plots of the maximum <111>{110} shear stresses beneath a rigid 

spherical indenter near the failure loads. (a) pictures a material with linear-elastic behav-

ior, and (b) a material with the non-linear behavior shown in Fig. 1. The stress is normal-

ized to the peak stress in (b) (= .089 of the shear modulus, G).  
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Figure 3 Macro- and micro-scopic response of the linear and non-linear FEM models and 

the analytic Hertzian solution. (a) Normalized applied stress as a function of indentation 

distance. The normalized stress is P/(G π R2), where P is the applied load, R is the radius 

of the indenter, and G is the shear modulus of the indenter. (b) Maximum shear stress and 

maximum shear stress resolved on <111>{110} as a function of indentation depth. The × 

and its error bar marks the upper range of indentation depths at which experimental 

failure occurred in W and Mo.  
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Figure 4 Comparison between theoretical and experimental estimates of ideal strength. 

Experimental estimates of ideal strength for both tungsten4 and molybdenum6 based on a 

Hertzian contact model exceed ab initio theoretical calculations under loading conditions 

of simple shear. However, ab initio calculations that include the effects of multiaxial 

constraint during indentation slightly exceed experimental estimates that incorporate both 

the crystallography of slip and the non-linear elastic response expected near the limit of 

elastic stability. 
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